
Scheduling Problem 
Solved with Quantum Approximate Op6miza6on Algorithm (QAOA) 

Teaser: QAOA is a hybrid near-term quantum algorithm u6lizing a problem Hamiltonian and a mixing 
Hamiltonian to solve combinatorial op6miza6on problems. Its circuits are sparse and rela6vely 
shallow, which are both requirements for the execu6on on NISQ-Devices. The term ‘hybrid’ refers 
here to the fact, that part of the algorithm is executed on a quantum computer and another part is 
executed on a classical computer. 

Introduction 
Scheduling problems are a branch of combinatorial op6miza6on problems. Thus, the objec6ve is to 
op6mize a schedule in terms of a target value. These schedules could be anything from landing 
sequences of aircraMs (a.k.a. aircraM landing problem) or sequences of work packages (a.k.a. job shop 
scheduling problem) to sequences of cars in a paint shop (e.g. binary paint shop problem). The target 
value would be in these cases e.g. landing the planes within their arrival 6me window, while 
maintaining safety distances, reducing the resources, or reducing the number of color swaps for a 
paint shop. While these problems are already formulated as mathema6cal models, in general this is 
not the case. Thus, the first step is to mathema6cally model the real-world problem. Once such a 
model is formulated it could be translated in different models. A model, which is suited for 
combinatorial op6miza6on problems on universal gate-model quantum computers is the Ising-
Hamiltonian and can be solved with the Quantum Approximate Op6miza6on Algorithm (QAOA). 

Quantum Approximate Optimization Algorithm 
QAOA (“Quantum Approximate Op6miza6on Algorithm” or “Quantum Alterna6ng Operator Ansatz”) 
is a modern hybrid algorithm for the universal gate-model quantum computer. Its circuits are sparse 
and rela6vely shallow, which are both requirements for the execu6on on so-called NISQ-Devices 
(noisy intermediate-scale quantum computers) [1]. The term ‘hybrid’ refers here to the fact, that part 
of the algorithm is executed on a quantum computer and another part is executed on a classical 
computer. In fact, the circuits are parameterized and executed on the quantum computer. The 
classical computer is u6lized to op6mize the parameters using an op6miza6on algorithm, which is 
either simplex or gradient based. Both parts are executed alterna6ng un6l either op6mal parameters 
are found, or other termina6on criteria are met.  

 

Figure 1: Quantum circuit diagram with QAOA Hamiltonians for p layers. 

The circuit itself starts in the equal superposi6on and is constructed of a problem Hamiltonian  
(e.g. the Ising-Hamiltonian or a spin glass Hamiltonian) and a mixing Hamiltonian  with a known 
ground state. Both together form a layer. A QAOA circuit can have  layers as shown in Figure 1. 

However, each Hamiltonian has its own parameter in each layer (i.e.  and ). In general, with 
increasing number of layers the solu6on gets beYer, but this also increases the depth of the circuit, 
which in turn results on current quantum devices in worse solu6ons. Thus, a good compromise must 
be found.  
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The binary paint shop problem 
The binary paint shop problem is a simplifica6on of real-world paint shops in the automo6ve 
industry, which Volkswagen has recently shown, that it is solvable with QAOA on a quantum 
computer [2]. The problem itself assumes, that there is a queue of car configura6ons which should be 
painted in one of two colors. Each car configura6on exists twice in the queue and both configura6ons 
should be painted in opposite colors. The sequence of the cars can’t be changed. However, the 
algorithm can decide, if the first occurrence of a configura6on should be colored with color one or 
color two. The second occurrence of the configura6on is then, obviously, colored in the other color. It 
can be shown that already this simplifica6on of the problem is not only NP-hard, but also APX-hard 
(there is no efficient algorithm, which can approximate the op6mal solu6on).  

Solving the binary paint shop problem with QAOA 
To solve the binary paint shop problem with QAOA we have to convert the problem into a 
Hamiltonian. Here we will use the spin glass Hamiltonian, which is of the following form:  

 

Each car configura6on is only one qubit and  and  go over consecu6ve cars. If these cars are both 
either seen for the first 6me or seen for the second 6me  becomes  and otherwise . The 
mixing Hamiltonian is, as usual, of the following form: 

 

The solu6on shows us then the color for the first occurrence of each car configura6on.  

Outlook 
Volkswagen has shown, that a slight modifica6on of the binary paint shop problem could be used to 
op6mize the applica6on of the primer in one of its car facili6es [3]. However, this algorithm was 
executed on a quantum annealer. 
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Case Study: Portfolio Optimization using 
Grover Adaptive Search 
Introduc>on 
Grover Adap+ve Search (GAS) is an extension of the Grover Search (GS) algorithm. Instead of 
searching for a specific value, GAS can find the lowest (or highest) value without knowing the exact 
number before. Further, using a special ini+al state, namely the Quantum Dic+onary, this allows us to 
find the op+mal solu+on of combinatorial op+miza+on problems using its QUBO representa+on. In 
this case study we want to examine Grover Adap+ve Search on a specific combinatorial op+miza+on 
problem, namely the problem of PorKolio Op+miza+on. 

Grover Search 
Grover Search is an already older algorithm developed by Lov Grover in 1996 [1]. It u+lizes Amplitude 
Amplifica+on to find one or more entries in an unsorted set. The entry is a binary number and 
represented by the qubits. Thus, requiring one qubit per bit. 

In general, the algorithm consists of mul+ple itera+ons, where one itera+on consists of an oracle and 
a diffusion operator. Star+ng in an equal superposi+on over all entries, the oracle flags the entries of 
interest by inver+ng their amplitudes. The diffusion operator reflects then all amplitudes at the mean 
value of all amplitudes. This results in an overall higher amplitude of the entries of interest and a 
lower one of the others as shown in Figure 1. Applying the itera+ons, the amplitudes of the entries of 
interest are first rising, however there is a turning point, where it flips over resul+ng in lower 
amplitudes for the entries of interest. When we are looking only for one entry, we have to apply the 

 itera+ons, where  is the number of entries. Compared to the best-known classical algorithm 

we only need  instead of  runs. 

 

Figure 1: Demonstra1on of the effect of first applying the oracle and a;erwards applying the diffusion operator. 

On first sight this algorithm isn’t very useful, since we need to know the entries of interest in order to 
construct the oracle. However, using a Quantum Dic+onary [2] we can extend Grover’s Algorithm to 
find a specific solu+on to a combinatorial op+miza+on problem using QUBOs. 

Quantum Dic+onaries are maps of keys and values. They use a key and a value qubit register and 
store all entries in an equal superposi+on. Most importantly we don’t have to enter the value 
explicitly, but can use a func+on (e.g., a QUBO), that takes the key and calculates the value. Using 
Grover Search on the value register, we can now find a key (a combina+on of a combinatorial 
problem) for a specific value (a goal func+on value; the goal func+on is what we usually want to 
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minimize or maximize). However, this leads us to a new problem since we usually don’t know the 
op+mal goal func+on value in beforehand. 

Grover Adap>ve Search 
Grover Adap+ve Search solves the problem of finding a minimal or maximal value in a Quantum 
Dic+onary using Grover Search [3]. For a minimiza+on problem it starts with searching for all values, 
which are smaller than the highest value which can be represented by the value register or an 
educated guess. If the Grover Search has found a be_er value, we use this as our new boundary 
value. If we can’t find a be_er value a`er a given number of tries, we assume, that we have found the 
op+mal value and its solu+on.  

Por?olio Op>miza>on 
PorKolio Op+miza+on tries to find an op+mal subset of an investment universe in terms of risk and 
expected returns under a given budget. 

As input, we have an investment universe of  assets, their expected returns  (as a vector) and a 
covariance matrix . Both can be calculated from historic values of the stock market. With a given 

risk appe+te  we can create our object func+on , where  denotes, if we 

choose an asset or not. Usually, we have also a budget , which limits our ability to buy stocks. The 
budget is added to our object func+on as a penalty. 

A Simple Por?olio Op>miza>on Example 
As an example, we use the stocks: GOOG, AAPL, TSLA and JPM, with their historic values from 
September 2021. We have a risk appe+te of  and want to buy one quan+ty of two different 
stocks. A first glance at the rela+ve historic values of our investment universe (see Figure 2) shows us 
already the op+mal solu+on 0011 (0 – GOOG, 0 – AAPL, 1 – TSLA, 1 - JPM).  

 

Figure 2: Comparison of the price trend in rela1ve values for the  four stocks. 

Without going too much into detail of the specific covariance matrix and the returns vector, we have 
to point out something important: Since we are using bit-values to represent the goal func+on value, 
we have to scale the matrix and the vector in such a way, that two goal func+on values are at least 1 
apart from each other. However, this also effects the required number of qubits in the value register 
(the greater the number the more (qu)bits we need to represent them), thus we have to scale up 
very carefully. 
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We have executed 100 experiments for the given problem. Figure 3 shows, that we have a high 
probability to measure the correct result a`er execu+ng Grover Adap+ve Search. However, we have 
to admit, that we executed the experiments only on the state vector simulator and not on current 
hardware. This has two reasons: First, we already need for this small problem 12 fully connected 
qubits in a quantum computer and second, the current quantum computers are not able to execute 
quantum circuits with such a high depth (meaning the number of gates executed on one qubit). 

 

Figure 3: Results of 100 experiments Grover Adap1ve Search on the PorJolio Op1miza1on Problem (the op1mal solu1on was 
0011 and the budget was two). 

Conclusion 
In this case study we have shown how to solve the PorKolio Op+miza+on Problem using Grover 
Adap+ve Search. We have seen that Quantum Dic+onaries and GAS are not viable on current 
Quantum Computers. However, we can use the same QUBO to solve the problem using QAOA or 
VQE. Further experiments have shown, that with a fault tolerant Quantum Computer with sufficient 
qubits GAS can outperform hybrid algorithms such as QAOA and VQE. 
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